

ИЗИСТИМпечи для русской бани
ООО «Завод ИзиСтим»
Тел. 8-800-555-5616 info@easysteam.ru www.easysteam.ru

ПЕЧИ «АНАПА» «СОЧИ» «ГЕЛЕНДЖИК»

МОНТАЖ И ЭКСПЛУАТАЦИЯ

Благодарим Вас за выбор и проявленный интерес к нашей продукции.

Выпуская печи для бани, мы стараемся делать их максимально удобными в эксплуатации, долговечными и безопасными в работе. А технические решения и конструктивные особенности печей, подтвержденные испытаниями в условиях русских парных, позволили нам громко заявить - «ИзиСтим» печи для настоящей, Русской бани!

Установив в своей семейной парной печь от компании «ИзиСтим», Вы получите то соотношение температуры и влажности воздуха (микроклимат), которое наиболее Вам приемлемо. Создайте русскую баню! Со свойственным ей приятным теплом и легким паром!

<u>Для правильной и безопасной эксплуатации печи, просим внимательно изучить настоящую инструкцию!</u>

Легкого пара! компания «ИзиСтим»

 Настоящий
 документ
 защищен
 законом
 о
 защите

 авторских прав, международными договорами по защите
 авторского права, а также иными законами и соглашениями о защите интеллектуальной собственности.
 полное или частичное воспроизведение материалов настоящего документа без письменного разрешения разработчика запрещено!

<u>№ К монтажу, эксплуатации и обслуживанию печи, допускаются только лица, изучившие настоящую инструкцию.</u>

Слелано в России

www.easysteam.ru

Оглавление

Назначение	4_
Описание изделия	5_
Подготовка печи к эксплуатации	8
Работа печи	10
Фундамент печи	12
Монтаж фундамента	14
Расчет размеров фундамента	14
Защитный экран	15
Защитный экран из природного камня	15
Защитный экран из кирпича	17
Система получения горячей воды	22
Состав системы получения горячей воды	23
Работа системы получения горячей воды	24
Монтаж системы получения горячей воды	25
Габаритные размеры печи	26
Технические характеристики	27
Комплект поставки	28
Транспортировка и хранение	29
Возможные неисправности и методы их устранения	29
Паспорт изделия	30

Назначение

Дровяная печь-каменка предназначена для создания в парильном отделении бани условий настоящей русской парной, с присущим ей температурно-влажностным режимом. Вы получите столько легкого пара, сколь Вам будет угодно.

Мспользование печи в других целях допускается только с письменного разрешения производителя. При использовании печи в коммерческих целях, а также при непрерывной топке печи более 10 часов, все гарантийные обязательства и ответственность за все возможные негативные последствия с производителя снимаются.

Описание изделия

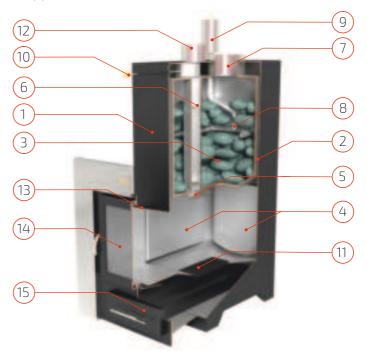


Рис. 1 Схема расположения элементов печи

№ поз.	Наименование	№ поз.	Наименование
1	Корпус	9	Устройство дозирования
2	Конвекционные каналы	10	Терморегулирующая задвижка
3	Каменка	11	Колосниковая решетка
4	Защитные экраны	12	Выход дымовых газов
5	Рассекатель пламени	13	Топливный канал
6	Центральный дымоход-лабиринт	14	Дверка
7	Труба выхода пара	15	Зольник
8	Парогенератор		

При установке газового оборудования терморегулирующая задвижка (поз. 10) и центральный дымоход лабиринт (поз. 6) не устанавливается.

Банные печи компании «ИзиСтим» выполнены из нержавеющей, жаропрочной стали с содержание хрома не менее 17% и толщиной стенки от 4 мм. Корпус печи (поз.1) представляет собой гнуто-сварную конструкцию сложной геометрии, с дополнительной установкой усиливающих конструкцию элементов. С внешней стороны по боковым стенкам печи располагаются конвекционные каналы (поз.2). Поддержание высокой температуры пламени в топочном пространстве необходимо для максимального разогрева внутренней закладки каменки (поз.3). На внутренней поверхности камеры сгорания установлены защитные экраны (поз.4), позволяющие перераспределить температурные нагрузки внутри топочного пространства и значительно увеличить передачу тепловой энергии на дно каменки, а также снять нагрузки с несущего корпуса печи.

Каменка печи представляет собой резервуар сложной геометрии, расположенный строго по центру печи. Изготавливается в гнуто-штампованном исполнении.

Для полного и равномерного прогрева внутренней закладки, а так же возможности регулировки нагрева печи, помимо технологических зазоров расположенных между каменкой и корпусом, в каменке устроен центральный дымоход-лабиринт (поз.6). Для предотвращения попадания высокотемпературного пламени в дымовой канал (дымоход) через центральный дымоход-лабиринт печь снабжена «рассекателем пламени» (поз.5). При работе печи совместно с рассекателем больший объем пламени остается внутри печи максимально разогревая каменку, а в дымовой канал попадают только продукты горения.

Для равномерного распределения нагрузки идущей от массивной внутренней закладки, дно каменки выполняется полукруглым, что позволяет существенно увеличить площадь нагрева и исключает вероятность деформирования дна при колоссальных тепловых нагрузках. Обслуживание каменки происходит через трубу выхода пара (поз.7).

В связи с тем, что каменка в процессе работы печи является одним из самых нагруженных элементов, масса закладки не должна превышать максимально-установленную, настоящей инструкцией!

Для получения качественного, мелкодисперсного пара, в каменку встроен парогенератор (поз. 8), представляющий собой сложную систему вертикальных и горизонтальных трубок. В горизонтальных трубках по всей длине выполнены отверстия малого диаметра для равномерного выхода пароводяной смеси по всей поверхности нижнего и самого разогретого слоя закладки. В верхней части парогенератора крепится устройство дозирования (поз. 9). Для предотвращения несанкционированного выброса пароводяной смеси в обратном направлении, устройство снабжено предохранительным (обратным) клапаном.

Перед началом работы необходимо убедится в работоспособности устройства дозирования. Снять (открутить) устройство, осмотреть предохранительный клапан. В случае обнаружения инородных предметов (мелких частиц банного веника, и прочего), удалить их и промыть устройство. Работоспособность предохранительного клапана проверяется путем встряхивания устройства вверх вниз. Работоспособному устройству характерно звонкое бряканье клапана в обоих направлениях. Это указывает на то, что ходу клапана в устройстве, ни что не мешает.

На передней стенке печи расположен механизм управления терморегулирующей задвижкой (поз.10), позволяющей работать печи в двух режимах, режим «интенсивный прогрев парной» и режим «интенсивный прогрев каменки».

В нижней части печи располагается колосниковая решетка (поз.11), выполненная из массивного литейного чугуна. Через щели колосниковой решетки в зону топки поступает кислород, необходимый для процесса высокотемпературного горения, а так же происходит удаление продуктов сгорания в зольник (поз.15)

В верхней части расположена труба для удаления топочных газов (поз.12), труба для выхода пара (поз.7) и трубка парогенератора, для соединения с дозирующим устройством.

Фасад печи (поз.14) состоит из рамки специальной формы с закрепленными на ней топочной для закладки дров и зольной для обслуживания печи дверцами.

Фасад и корпус печи разделяет топливный канал (поз.13), глубиной 180 мм, позволяющий производить топку печи из смежного с парной помещения.

Печь окрашивается кремнийорганической эмалью черного цвета.

Подготовка печи к эксплуатации

Перед установкой печи, следует произвести первую топку вне помещения. Время первой топки от 4 до 5 часов. При первой топке с поверхности печи выгорают все технические компоненты (грязь, производственная пыль и прочее) попавшие на печь при ее транспортировке, складском и производственном хранении.

Перед запуском печи в работу убедитесь в правильности выполнения монтажных работ, согласно требований, указанных в настоящей инструкции и инструкциях полученных от производителей комплектующих участвующих в работе печи!

При разработке проекта бани и монтаже печи необходимо ОБЯЗАТЕЛЬНОЕ соблюдение норм противопожарной безопасности, указанных в СНиП 2.01.02-85* «Противопожарные нормы», СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование». Несоблюдение требований данных правил может стать причиной пожара.

Необходимо регулярно производить ревизию печи и дымохода. В случае обнаружения, каких либо неисправностей в работе оборудования, следует немедленно прекратить эксплуатацию и связаться со специалистами нашей компании для получения консультации о возможных причинах неисправности и оптимальных путях ее решения.

Для организации системы дымоотвода необходимо применять только дымоходы из нержавеющий жаростойкой стали AISI 316 (310, 321), с толщиной стенки внутренней трубы не менее 0,8 мм в обкладке кирпичом, либо в обкладке камнями, закрепленными декоративным листом (экономайзер).

Для обеспечения хорошего воздухообмена в парильном отделении необходимо организовать приточно-вытяжную вентиляцию.

Поступление свежего воздуха следует предусмотреть до установки печи. Для усиления тяги перекрываемый вентиляционный канал (канал свежего воздуха) рекомендовано подводить в зазор между теплоаккумулирующим экраном и печью.

Для удаления накапливающегося в процессе дыхания углекислого газа в дальнем от печи углу под потолком, необходимо организовать небольшое окно.

Закладка камней происходит через горловину каменки на верхней панели печи.

<u>М</u> Не каждый камень пригоден для использования в банных печах! Камни неизвестного наименования и происхождения использовать не следует!

Для внутренней закладки рекомендуем использовать такие породы как габбродиабаз, жадеит, кварцит, кварц, порферрит, яшма и т.п. Они не содержат вредных примесей, обладают высокой теплоемкостью и не бояться перепадов температур. Перед закладкой камни следует очистить от возможных инородных частиц и промыть в горячей воде.

На дно каменки, под парогенератор, укладываются камни фракцией 100х80х70мм. Далее рекомендуется укладывать камни большего размера, а пустоты между ними заполнять более мелкой фракцией.

Во избежание причинения вреда печи, не следует делать «монолитную» укладку камней. Всегда оставляйте небольшие зазоры между камнями.

Масса заклалки не должна превышать допустимую и установленную настоящей инструкцией!

Для использования в качестве топлива природного или сжиженного газа на печь на заводе-изготовителе устанавливаются горелочные устройства серии ГГУ или серии САБК-ТБ.

Рис. 2 Внешний вид горелочных устройств

Горелочное устройство устанавливается в топочное пространство печи и закрепляется с помощью крепежных элементов. Более подробную информацию по подключению, использованию, а также технические характеристики горелочных устройств см. в инструкции по эксплуатации горелочного устройства.

Внешний вид горелочного устройства может отличаться от представленного на рис. 2

Работа печи

Правильная топка печи способствует значительному увеличению срока службы и уменьшает риск возникновения пожара. Рекомендуемая загрузка топки — 50-70% от объема. Наиболее подходящим топливом для печи являются сухие дрова лиственных пород (березовые, осиновые, ольховые). Допускается использование качественных топливных брикетов из прессованных опилок.

Запрещено топить печь углем или торфом

Для растопки печи поместите в топочное пространство охапку сухих дров (5-7 поленьев) и выдвиньте терморегулирующую задвижку на себя (режим «интенсивный прогрев парной»).

Длина поленьев не должна превышать указанных в технических характеристиках размеров! Это может привести к закопчению стекла и перегреву топочного портала.

Спустя некоторое время после растопки печи, начинается интенсивный процесс горения, высокотемпературные газы устремляются вверх и через технологические зазоры между каменкой и корпусом печи, а так же центральный лабиринт (дымоход), охватывают каменку со всех сторон языками пламени.

Достигнув наивысшей точки, высокотемпературные дымовые газы ударяются в верхнюю часть печи и замыкаются в плотное кольцо вокруг каменки, тем самым, усиливая разогрев внутренней закладки.

Кислород необходимый для высокотемпературного горения в нижней области топки, поступает непосредственно через колосниковую решетку.

<u>Мнтенсивное высокотемпературное горение - процесс непосредственно связанный с подачей кислорода и регулируемый путем открытия и закрытия поддувальной дверцы.</u>

При правильной организации системы дымохода, дымовые газы не поступают в топочное помещение даже при открытой топочной дверце.

С нагреванием каменки связан процесс нагревания камней (внутренней закладки). Хорошо разогретая каменка, гарантия получения легкого пара!

Для создания в парном отделении условий температурно-влажностного режима, присущего Русской парной, монтаж печи производится в составе с теплоаккумулирующим (защитным) экраном.

При работе печи, в составе с теплоаккумулирующим экраном (см. раздел защитный экран) происходит процесс циркуляции воздуха, следствием чего является быстрый прогрев парного отделения.

Регулировка температуры воздуха в парном отделении осуществляется путем открытия закрытия конвекционных дверок, установленных в экране (см. раздел защитный экран).

Защитный экран улавливает прямое излучение разогретых стенок печи, защищает от ожогов и делает исходящее тепло мягким и приятным, а так же дает возможность регулировки температуры парной с точностью до 10 градусов. Поддержание температуры воздуха в заданном диапазоне происходит за счет аккумулированного в экране тепла.

Для предотвращения перегрева парного отделения, в момент достижения температурой воздуха порога 60-70 градусов следует задвинуть терморегулирующую задвижку, тем самым перевести работу печи в режим «интенсивный прогрев каменки».

В режиме «интенсивный прогрев каменки» основная температурная нагрузка направлена исключительно на прогрев и поддержание температуры внутренней закладки каменки, при этом температура стенок печи и расход дров понижаются.

Понижение температуры стенок печи в режиме «интенсивный прогрев каменки» процесс продолжительный и не приводящий к их полному остыванию.

В случае понижения температуры воздуха в парном отделении, ниже предела 60-70 градусов (в условиях продолжительной эксплуатации парной), следует на непродолжительное время перевести работу печи в режим «интенсивный прогрев парной».

Получение качественного пара происходит путем подачи воды в систему парогенератора. Из устройства дозирования, вода поступает в горизонтальные трубки системы, где происходит предварительная подготовка (переход воды в пароводяную смесь). Далее через небольшие отверстия расположенные по все длине горизонтальных трубок пароводяная смесь под давлением влетает в нижнюю, самую разогретую толщу закладки. Пройдя путь снизу вверх, выходит через паровую трубу, насыщая парную только легким паром. В процессе парообразования участвуют все камни закладки (весь камней, объем каменки) вся плошаль поэтому пар получается мелкодисперсным (невидимым) - легким!

<u>Будьте аккуратны!</u> <u>Процесс перехода воды, равной объему дозатора, в пар,</u> занимает не более 5 секунд!!!

<u>Присутствие в материале печи такого элемента как Cr (хром), препятствует выжиганию кислорода в парной металлическими поверхностями печи!</u>

Фундамент печи

Фундамент печи - подземное основание, как правило, изготовленное из бетона, являющееся основной несущей конструкцией, функция которой заключается в передаче нагрузки от установленной печи на основание (грунт).

Для устройства фундамента под печь с кирпичным дымоходом следует придерживаться следующих рекомендаций:

- 1. Фундамент под печь должен нести нагрузку только от самой печи, поэтому в случае близости фундамента печи к фундаменту стен их не объединяют. Расстояние между фундаментами должно составлять 30-50 мм, чтобы фундаменты имели возможность свободно перемещаться относительно друг друга при их осадке.
- 2. При благоприятном соотношении таких факторов как: климатические условия, тип грунта, масса конструкции (Пример: установка печи с экраном из талькохлорита и металлическим дымоходом не превышает 750 кг), возможна организация объединённых фундаментов (связывание фундаментов друг с другом). При этом следует особое внимание обратить на устройство арматурного каркаса и узел соединения фундаментов.
- 3. Ширина и длинна фундамента, определяется в соответствии с габаритными размерами печи, плюс технологический зазор учитывающий толщину облицовочного экрана и необходимые зазоры. В отдельных случаях необходимо добавить 100 мм по периметру для опор настила пола.

Фундамент для печи и отдельно-стоящего дымохода делается единой железобетонной конструкцией.

4. Для предотвращения выпучивания фундамента закладку рекомендовано проводить на глубину промерзания грунта в соответствии со СНиП 2.02.01-83*.

Например:

- для Москвы на суглинке и глине 1320 мм
- для Екатеринбурга на супеси, песка мелкого и пылеватого 2090 мм
- для Краснодара на песке гравелистом, крупном и средней крупности 440 мм.
- Вне зависимости от конструкции, фундамент необходимо гидроизолировать по верхнему обрезу с целью защиты от проникновения грунтовой влаги к кирпичным конструкциям печи. этого фундамент укладывается Для на слоя гидроизоляционного материала.



Рис. 3 Схема устройства фундамента

Монтаж фундамента

- 1.Подготовка котлована.
- 2. Устройство опалубки доска 25-30 мм.
- 3.Устройство подстилающего слоя: песчаная подушка 150-200 мм с трамбовкой, далее слой щебня (фракцией 50-70 мм) 150-200 мм.
- 4.Устройство арматурного каркаса (Арматура A -III 10 мм., крепление стержней произвести вязальной проволокой).
- 5.Заливка бетоном.

<u>Л</u> Для заливки фундаментов используют бетон изготовленный на бетонном заводе или бетон приготовленный непосредственно на строительной площадке.

6. Установка гидроизоляции.

На заметку:

При производстве бетона на бетонном заводе, учитывается не один десяток параметров и характеристик, соответственно качество бетона гораздо выше!!!

<u>При самостоятельной подготовке раствора (при большом объеме фундамента), следует учесть, что интервал между заливками не должен превышать 12 часов.</u>

На время затвердевания (до 22 суток), во избежание резкого испарения влаги, фундамент следует накрыть полиэтиленовой пленкой, а при необходимости поливать водой.

Расчет размеров фундамента

<u>ширина (мм)</u> = $b_{II} + 2xb_{B3} + 2xb_{OII} + 2x\delta_{ЭКР}$ где,

 $\delta_{3\kappa p}$ — толщина теплоаккумулирующего экрана (природный камень от 40 до 60 мм, кирпич 65 или 120 мм)

b_п – ширина печи

b_{вз} – ширина воздушного зазора (50-70 мм)

b_{оп} – ширина на опору настила пола (0-100 мм)

длина (мм) = $l_{II} + 2xb_{B3} + \delta_{ЭКР} + b_{OII}$ где,

 $\delta_{3\kappa p}$ - толщина теплоаккумулирующего экрана

l_п – длина печи

b_{вз} – ширина воздушного зазора (40-65 мм)

b_{оп} – ширина на опору настила пола (0-100 мм)

высота (мм) = $h_{\Gamma D} + h_{\Pi O, 10} - h_{KC}$ где,

h_{гр} – глубина промерзания грунта

h_{пола} – высота от уровня земли до уровня предполагаемого пола

 $\mathbf{h}_{\kappa c}$ – высота кирпичного слоя и гидроизоляции под основание печи

Защитный экран

Назначение теплоаккумулирующего экрана заключается в удержании, сохранении излишек выделяемого печью тепла, улавливании прямого излучения разогретых стенок печи, защита от ожогов, создании системы конвекционных каналов позволяющих совместно с печью регулировать температуру парного отделения в заданных диапазонах. Экран из природного камня или кирпича позволит полноценно просушить парную и моечное помещение после банно-помывочных процедур.

<u> Для правильной установки печи рекомендуется соблюдать требования данного раздела.</u>

Защитный экран из природного камня.

Рис. 4 Пример установки печи в облицовке из природного камня

- 1. Производиться устройство фундамента под печь (см. раздел фундамент печи).
- 2. В месте прохода топочного канала печи выпиливается проем.

Минимальное расстояние от кожуха (из кирпича или природного камня) печи до возгораемых поверхностей 500 мм.

- 3. На подготовленное основание (фундамент печи) устанавливается печь.
- 4. Проверяется привязка (соосность) подключения печи к дымоходу.
- 5. Выкладывается кирпичная кладка фасадной стены в $\frac{1}{2}$ кирпича (см. раздел защитный экран из кирпича).

- 6. В парной, кирпичная кладка фасадной стены облицовывается плиткой из природного камня. В качестве связующего материала применяется термостойкий плиточный клей или мастика. Для лучшего сцепления на плитке необходимо сделать насечку 30 х30 мм, глубиной 1-2 мм.
- 7. Производиться монтаж облицовки из природного камня. Все облицовки собираются из плит и крепежных элементов без применения клеящих составов. Плиты подписываются по следующим принципам:
 - фасадом облицовки считается стена, находящаяся со стороны топочного канала печи
 - на каждой плите присутствует указание номера яруса, сторона установки и стрелка указывающая вверх
 - в облицовках со столбами по углам столбы маркируются с указанием стен, между которыми они устанавливаются, и номером яруса

В качестве крепежа для сборки облицовок применяем анкера, винты, уголки и металлические полосы. Плиты поставляются с уже установленными в них анкерами. Порядок сборки:

- Установите подставки согласно чертежу облицовки.
- На подставки поставьте плиты первого яруса.
- Скрепите плиты первого яруса уголками с помощью винтов, предварительно выставив плиты таким образом, чтобы между ними не было щелей. Не перетягивайте винты, так как анкер в плите может провернуться. Для надежного крепления достаточно не сильной затяжки.
- Установите металлические полосы в пазы на торцах плит первого яруса.
- Установите плиты второго яруса на уже скрепленную конструкцию.
- Продолжайте сборку по описанному принципу.

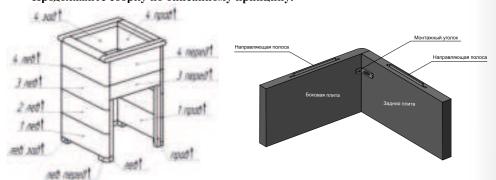


Рис. 5 Пример маркировки некоторых плит.

<u>Рис. 6 Расположение монтажного уголка и металлических полос</u>

Рис. 7 Пример установки печи с отдельно стоящим дымоходом

Применяются следующие типы дымоходов:

- дымоход нержавеющий одноконтурный в обкладке кирпич ом
- дымоход типа «Сэндвич»

Защитный экран из кирпича

Теплоаккумулирующий экран позволит удержать внутри излишки выделяемого от печи тепла, при этом, не создавая помех необходимому количеству тепла проходить сквозь него и поддерживать постоянную температуру в парном отделении.

При выборе материала для установки экрана печи, рекомендуется использовать следующие материалы:

- кирпич керамический полнотелый печной «LODE» (Латвия)
- кирпич керамический полнотелый печной «Гжель»
- кирпич керамический полнотелый печной «Кирово-чепецкий»
- кирпич керамический полнотелый печной «Витебский» (1 цех) Беларусь

При возведении кирпичного экрана применяется керамический кирпич габаритами 250х120х65 мм, толщина связующего шва находится в пределах от 5 до 9 мм.

В качестве скрепляющего раствора следует использовать глиняный раствор, либо готовую печную смесь на основе красной глины:

- Печная смесь Боровичи «СЭВ»
- Костромская печная смесь «Макаровыхъ»
- иные связующие растворы, не содержащие вредных примесей и подходящие под условия эксплуатации при высоких температурах.

Проводить кирпичную кладку дымохода без внутренней металлической трубы не допускается!

Все стенки экрана должны быть связанны между собой. Кладка производится непосредственно на предварительно подготовленный фундамент. Высота экрана в парной должна быть выше на 30-50 мм верхней крышки корпуса печи (без учета паровой и дымовой труб).

Не рекомендуется расстояние от ребер жесткости печи до экрана делать более 30 мм, т.к. это приведет к неэффективному прогреву кожуха и более длительному прогреву бани

- Нижние конвекционные дверки устанавливаются на минимальном расстоянии от уровня пола. Для достижения максимального конвекционного эффекта монтаж дверок провести со всех сторон экрана.
- Минимально-рекомендуемая площадь нижних конвекционных дверок 500 см 2 , верхних 600 см 2 .
- Переднюю стенку экрана рекомендуется возводить на всю высоту помещения.
- Вокруг штока терморегулирующей задвижки по всей его длине необходимо обеспечить технологический воздушный зазор 5 мм для компенсации температурных расширений
- Для перекрытия топочного канала или канала из каменки используется 2 уголка 50×50 мм
- Кирпичную кладку рекомендуется армировать стальной проволокой \varnothing 2-3 мм, каждые 4-5 рядов.
- При перекрытии верха печи кирпичом, кладку производить на уголки 50х50 мм, установленные на боковые стенки экрана. В уголках по месту прохождения элементов печи необходимо сделать пропилы.
- При организации перекрытия из кирпича следует предусмотреть в верхней части экрана, конвекционные отверстия для выхода горячего воздуха.
- При установке печи в кирпичном кожухе с перекрытием верха печи камнями, верхнюю часть печи задекорировать камнями (уложить 50-70 кг). При этом следует выбирать камни большего размера, в сравнении с шириной зазора между печью и экраном. В данном случае конвекционные потоки проходят в зазорах между камнями.

<u>Рис. 8 Пример установки печи в кирпичном кожухе с функцией обогрева комнаты отдыха и моечного отделения</u>

<u>Камни, расположенные на верхней поверхности, не пригодны для получения пара, а служат исключительно в декоративных целях и возможного испарения с их поверхности, различного рода ароматизирующих жидкостей.</u>

При установке печи в кирпичном кожухе с регулируемой конвекцией и перекрытием верха печи нержавеющим листом перекрытия, на лист перекрытия сверху укладываются камни массой не более 120 кг или 1 ряд кирпича без связующего материала (глины, раствора).

<u>Лист перекрытия не является несущим элементом конструкции, на него</u> запрещено производить обкладку дымохода кирпичом.

При данной установке, первым участком дымохода рекомендуем установить экономайзер.

При установке печи с отдельно стоящим дымоходом, проводить кирпичную кладку дымохода без внутренней металлической трубы не допускается!

Рис. 9 Пример декорирования верха печи камнями

Рис. 10 Пример установки печи в кирпичном кожухе с листом перекрытия

<u>Рис. 11 Пример установки печи в кирпичном кожухе с отдельно стоящим дымоходом</u>

Система получения горячей воды

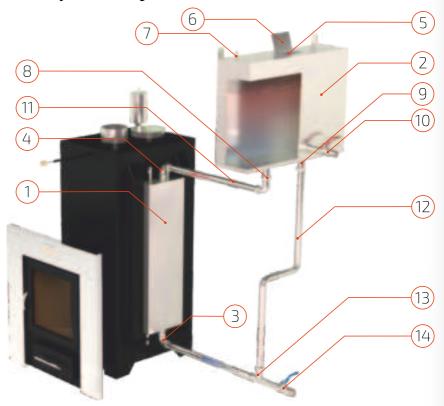


Рис. 12 Основные элементы системы подготовки горячей воды

№ поз.	Наименование	№ поз.	Наименование
1	Теплообменник	8	Штуцер входа
2	Накопительный бак	9	Штуцер выхода
3	Штуцер входа	10	Кран отбора воды
4	Штуцер выхода	11	Соединительная трубка
5	Горловина бака	12	Соединительная трубка
6	Крышка бака	13	Тройник
7	Пароотводящий штуцер	14	Сливной кран

Состав системы получения горячей воды

В системе получения горячей воды можно выделить два основных элемента, теплообменник (поз.1) и выносной бак (поз.2) соединенные между собой трубами.

Теплообменник представляет собой емкость прямоугольной формы, объемом 8 литров. Функция теплообменника заключается в приеме излучаемого печью тепла, вследствие чего происходит нагрев находящейся в нем воды. Теплообменник навешивается непосредственно на боковую стенку печи. Сверху и снизу теплообменник имеет штуцера (поз. 3, 4) с резьбой один дюйм для подключения трубопроводов от выносного бака.

<u>Поможенник является частью конструкции печи. При нагретой печи запрещено заполнять систему при отсутствии воды в уровнемере выносного накопительного бака.</u>

<u>Постоянная эксплуатация системы без заполненния водой не допускается, это</u> приводит к быстрому износу печи.

Выносной накопительный бак представляет собой емкость прямоугольной, цилиндрической или иной формы (форма и размеры бака могут меняться с учетом пожеланий и технических особенностей места установки). В верхней части бака расположены горловина (поз.5) для заполнения системы водой, с герметичной крышкой (поз.6) и штуцер (поз.7) с резьбой один дюйм для отвода пара вне помещения. В нижней части расположены, два штуцера с резьбой один дюйм вход и выход (поз.8 и поз.9 соответственно). Кран для отбора горячей воды расположен на передней стенке бака (поз.10). Все накопительные баки снабжены уровнемерами, что позволяет контролировать уровень воды в процессе эксплуатации.

Заполнение системы водой производить не выше верхней точки уровнемера.

Теплообменник и накопительный бак соединяются металлическими трубками (поз.11 и поз.12), диаметром один дюйм. Для возможности слива системы в зимнее время, на нижней трубке устанавливается тройник (поз.13) с присоединением к нему отводящей трубки. Слив системы осуществляется с помощью крана (поз.14)

При расстоянии менее одного метра между накопительным баком и теплообменным устройством, в случае понижения уровня воды в процессе потребления, а так же при топке печи более 3 часов, возможно закипание в системе горячей воды. Кипение воды в системе сопровождается незначительным шумом.

Для предотвращения процесса кипения воды, предлагаются следующие варианты:

- 1. Добавление в систему (при понижении уровня воды в процессе потребления) холодной волы.
- 2. Перевести терморегулирующую задвижку в режим интенсивный прогрев каменки.

Выбор накопительного бака следует производить исходя из расчета 15 литров на человека, плюс 10 литров для запаривания веника.

Работа системы получения горячей воды

Для начала работы системы, открутите расположенную на баке крышку и залейте воды.

<u>Лаполнение системы водой производить до растопки печи. Заполнение пустой системы при горячей печи запрещено!</u>

При работе печи происходит процесс выделения тепла стенками печи, существенная часть которого передается в теплообменник, нагревая находящуюся в нем воду. Начинается процесс естественной циркуляции воды, возникающий вследствие разницы температуры воды в теплообменнике и накопительном баке. Вода теплообменника и накопительного бака начинает перемешиваться. Система начинает работать.

Для отбора горячей воды, откройте кран (поз.14), находящейся на передней стенке бака. Расчетное время нагрева воды в системе до температуры 80 градусов, от двух до трех часов и зависит от схемы соединения теплообменника с баком, а также их удаленности друг от друга.

<u>М В случае сильной удаленности бака и теплообменника или сложной геометрии подводящих труб, в систему следует врезать циркуляционный насос малой мощности.</u>

Процесс нагрева системы неизбежно связан с процессом парообразования (испарением воды). Чем выше температура воды в системе, тем интенсивнее идет процесс парообразования. Весь выделяемый при работе системы пар, по системе пара-отвода необходимо удалять вне помешения.

<u>Систему пара-отвода следует проверять регулярно перед каждой топкой печи. В пелях собственной безопасности и сохранения работоспособности системы, не допускайте полного или частичного ее засорения.</u>

<u>М Во избежание разрыва системы в зимнее время, оставлять воду в системе</u> запрещено!

Монтаж системы получения горячей воды

При монтаже системы подготовки горячей воды, особое внимание уделяйте месту расположения устройства. Следует устанавливать теплообменное устройство таким образом, чтобы максимально сократить путь к накопительному баку и произвести максимально эффективное и целесообразное соединение.

Накопительный бак следует располагать таким образом, чтобы нижняя плоскость бака была выше верхней плоскости теплообменника не менее чем на 100 мм.

Максимальная разница высот между верхним уровнем теплообменника и дном накопительного бака не должна превышать 2-х метров. Устанавливать накопительный бак следует на стену, для этого на задней стенке корпуса накопительного бака предусмотрены крепления.

Соединение системы следует производить при помощи металлических труб и отводов. Не допускать провисания соединительных труб, трубы должны иметь уклон в сторону от накопительного бака к теплообменнику.

Проводить соединение бака и теплообменника следует исключая ненужные повороты и изгибы соединительных труб.

<u>Каждый дополнительный поворот соединительных труб ухудшает процесс</u> циркуляции.

В качестве уплотнителя на стыках резьбовых соединений теплообменника, следует использовать только высокотемпературные материалы (сантехнический лён).

Для удаления пара, образующегося при работе системы, штуцер пара-отвода соединяется с трубой (шлангом) отводящей пар из помещения.

Конец трубы (шланга) следует разместить в таком месте где, выходящий из него пар будет безопасен для окружающих! При использовании шланга необходимо следить, чтобы он не имел перегибов!

Для безопасной эксплуатации бак следует закрыть деревянной обрешеткой.

Габаритные размеры печи

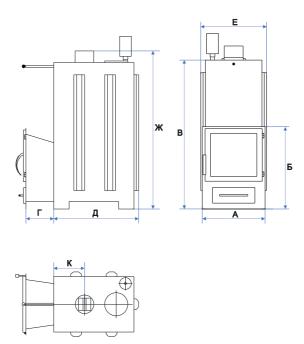


Рис. 9 Габаритные размеры печи

П	Размеры, мм							
Печь	A	Б	В	Γ	Д	E	Ж	К
Анапа	380	470	800	180	550	420	890	200
Сочи	400	525	950	180	550	420	1040	200
Геленджик	420	585	1050	180	630	460	1140	260

№ СВЯЗИ С ПОСТОЯННОЙ РАБОТОЙ НАД УЛУЧШЕНИЕМ ФУНКЦИОНАЛЬНЫХ И ЭСТЕТИЧЕСКИХ ХАРАКТЕРИСТИК ПЕЧЕЙ, КОНСТРУКЦИЯ И РАЗМЕРЫ, МОГУТ НЕЗНАЧИТЕЛЬНО ОТЛИЧАТЬСЯ ОТ ЗНАЧЕНИЙ ПРЕДСТАВЛЕННЫХ В ДАННОЙ ТАБЛИЦЕ. ДИАМЕТР ДЫМОХОДА У СТАНДАРТНЫХ МОДЕЛЕЙ ПЕЧЕЙ - 120 мм.

Технические характеристики печи

Модель		Анапа Сочи Геленди			
Объем отапли	иваемого помещения, м ³	до 15 до 22 до 35			
Габаритные	размеры				
Ширина, мм		420	420	460	
Высота, мм		970	1120	1140	
Глубина, мм		730	730	810	
	печь	жаропрочная нержавеющая сталь 4-6 мм			
Материал	дверки	сталь, стекло жаропрочное			
	колосниковая решетка	жарост	гойкий литейныі	й чугун	
Тип каменки		ВН	утренняя закрыт	гая	
Парогенерато	pp		встроенный		
Подача воды		в нижнюю зону			
Регулировка з	гемпературы парной		да		
Сушка парно	й	да			
Нагрев воды		да			
Топка из смех	кного помещения	да			
Быстрый нагр	рев помещения	да			
Исполнение		гнуто-сварная конструкция			
Диаметр дым	охода	120 мм 120 мм 150 мм			
Масса печи без учёта закладки камней		115 кг	135 кг	170 кг	
Масса закладываемых камней		55 кг	72 кг	90 кг	
Время вывода	время вывода на режим русской бани (зима / лето)		110 мин. / 80 мин.		
Максимальная длина поленьев		450 мм	450 мм	500 мм	
Количество п	отребляемых дров	5-12 кг/час 5-16 кг/час		10-20 кг/час	
Размер стекла	р стекла на топочной дверце (Ш-В) 280-220 мм 295-275 мм 310-			310-300 мм	
Вид топлива		дрова дрова, природный газ			

Комплект поставки

В комплект поставки изделия входит:

Дровяная печь со встроенным парогенератором	1 шт.
Дверца топливника	1 шт.
Зольник	1 шт.
Комплектующие	
Колосниковая решетка	1 шт.
Устройство подачи воды (чаша дозатор)	1 шт.
Крышка дозатора	1 шт.
Крышка каменки	1 шт.
Инструкция по монтажу и эксплуатации (Паспорт)	1 экз.

В зависимости от способа транспортировки и заявленных условиях хранения, производитель в праве самостоятельно принять решение о варианте упаковки изделия. Комплектующие упаковываются в мягкую упаковку и помещаются во внутреннее пространство печи.

Транспортировка и хранение

Транспортировать изделие допускается любым видом транспорта, выдерживая условия маркировки, нанесенные на упаковку.

Изделие следует хранить в помещении, не снимая фирменную упаковку.

Возможные неисправности и методы их устранения

Неисправность	Причина	Метод устранения
Нарушен процесс горения	1.Недостаточный приток воздуха в топку. 2. Ухудшилась тяга в дымовой трубе.	1.Очистить зольник. 2.Прочистить дымоход.
Запах дыма	Ухудшилась тяга в дымовой трубе. Недостаточная герметичность дымовой трубы. Изношенность дымохода.	1. Прочистить дымоход. 2. Проверить и уплотнить стыки дымовой трубы 3. Заменить дымоход.
Печь трудно растапливается	Ухудшилась тяга.	Прочистить дымоход.
Вода не поступает в парогенератор	Забились отверстия обратного клапана	Снять и прочистить воронку-дозатор
Предохранительный клапан не работает	Инородное тело в конструкции обратного клапана	Снять и прочистить воронку-дозатор
Выходящий пар имеет запах.	1. Некачественные камни. 2. Старость камней	1.Заменить камни и прочистить каменку. 2.Заменить камени и прочистить каменку.
При работе системы горячей воды, раздуваются стенки накопительного бака	1. Нарушена работа системы параотвода.	Прочистить систему.
Вода в системе закипает.	Недостаточный уровень воды в системе.	Добавить воды в систему или слить остатки.
Вода в теплообменнике кипит, а в накопительном баке остается холодной.	1.3асорение подводящих трубок. 2.Неправильный монтаж системы.	1.Прочистить подводящие трубки. 2.Получить консультацию производителя.

№ В случае обнаружения, каких либо неисправностей в работе оборудования, следует немедленно прекратить эксплуатацию и связаться со специалистами нашей компании для получения консультации о возможных причинах неисправности и оптимальных путях ее решения.

Паспорт изделия заволской №

	3a	водскои №		
Объект контрол Материал – AIS Толщина – 46 Процент контро	MM	»		
• качество у	жный осмотр (внутре ггловых сварных шво покрытие:	ов:	местах), установ	ълено: — —
Отклонения от 1	проекта			
		(дополнитель	ьные опции)	
Заключение:	изделие признано год	<u>ным к эксплуатаци</u>	и	<u>.</u>
Отметка ОТК:				
Провел испыта	мия	(Должность, ФИО)	((подпись)
			(число) (м	есяц) (201_)

www.easysteam.ru